Multivariate Probit Analysis of Binary Time
نویسنده
چکیده
SUMMARY The development of adequate models for binary time series data with covariate adjustment has been an active research area in the last years. In the case, where interest is focused on marginal and association parameters, generalized estimating equations (GEE) (see for example Lipsitz, Laird and Harrington (1991) and Liang, Zeger and Qaqish (1992)) and likelihood (see for example Fitzmaurice and Laird (1993) and Molenberghs and Lesaare (1994)) based methods have been proposed. The number of parameters required for the full speciication of these models grows exponentially with the length of the binary time series. Therefore, the analysis is often focused on marginal and rst order parameters. In this case, the multivariate probit model (Ashford and Sowden (1970)) becomes an attractive alternative to the above models. The application of the multivariate probit model has been hampered by the intractability of the maximum likelihood estimator, when the length of the binary time series is large. This paper shows that this diiculty can be overcome by the use of Markov Chain Monte Carlo methods. This analysis also allows for valid point and interval estimates of the parameters in small samples. In addition, the analysis is adopted to handle the case of missing at random responses. The approach is illustrated on data involving binary responses measured at unequally spaced time points. Finally, this data analysis is compared to a GEE analysis given in Fitzmaurice and Lipsitz (1995).
منابع مشابه
The Analysis of Bayesian Probit Regression of Binary and Polychotomous Response Data
The goal of this study is to introduce a statistical method regarding the analysis of specific latent data for regression analysis of the discrete data and to build a relation between a probit regression model (related to the discrete response) and normal linear regression model (related to the latent data of continuous response). This method provides precise inferences on binary and multinomia...
متن کاملMultivariate Probit Analysis of Binary Time Series Data with Missing Responses
1 SUMMARY The development of adequate models for binary time series data with covariate adjustment has been an active research area in the last years. In the case, where interest is focused on marginal and association parameters, generalized estimating equations (GEE) (see for example Lipsitz, Laird and Harrington (1991) and Liang, Zeger and Qaqish (1992)) and likelihood (see for example Fitzma...
متن کاملMultivariate Probit Analysis of Binary Time Series
SUMMARY The development of adequate models for binary time series data with covariate adjustment has been an active research area in the last years. In the case, where interest is focused on marginal and association parameters, generalized estimating equations (GEE) (see for example Lipsitz, Laird and Harrington (1991) and Liang, Zeger and Qaqish (1992)) and likelihood (see for example Fitzmaur...
متن کاملBayesian Analysis of Multivariate Probit Models
This paper provides a uni ed simulation-based Bayesian and non-Bayesian analysis of correlated binary data using the multivariate probit model. The posterior distribution is simulated by Markov chain Monte Carlo methods, and maximum likelihood estimates are obtained by a Monte Carlo version of the E-M algorithm. Computation of Bayes factors from the simulation output is also considered. The met...
متن کاملA Sparse Factor-Analytic Probit Model for Congressional Voting Patterns
This paper adapts sparse factor models for exploring covariation in multivariate binary data, with an application to measuring latent factors in U.S. Congressional roll call voting patterns. This straightforward modification provides two advantages over traditional factor analysis of binary data. First, a sparsity prior can be used to assess the evidence that a given factor loading may be exact...
متن کامل